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FINAL TECHNICAL REPORT

Introduction

The principal goal of this research effort was to develop
an effective computational algorithm for the estimation of
parameters in distributed parameter systems. The algorithm
was developed in a general setting which allowed application
to phenomena modeled by delay-differential equations, Volterra
integral equations, and partial differential equations with
memory terms.

In particular we investigated a gradient-based parameter
estimation method for dynamical systems in an abstract space.
The basic functional analytic framework was the theory of
semigroups of operators in infinite dimensional space. This
framework allowed application to distributed parameter systems
modeled by hereditary systems and partial differential
equations. This research focused both on theoretical aspects,
such as convergence criteria, and on the efficient -
implementation and testing of the algorithms for computational
purposes.

Summary of research

The dynamical systems under consideration were of the
general form

k(t) = A(q)x(t) + Bu(t)

x(0) = x0 (1)

y(t) = Cx(t)

where u and y are input and output functions, x is an infinite
dimensional state, and 4(q) is an evolution operator
depending on a possibly distributed parameter q. A
computationally feasible algorithm was developed for solving
the following identification problem.

Problem (ID). Given an input function u and observations
y at times t1, 1 = 1, ... , m, find a system parameter q

which minimizes the quadratic cost function

m
J(q) = 1 llCx(t ;q) - y1 ii2

1=1

where x(t;q) is the state at time t of the dynamical system
with parameter q.
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Hereditary models of fluid-structure interaction often
contain unknown parameters which need to be identified. Such
models may be cast as a dynamical system in an infinite
dimensional space as in equation (1). Our goal was to
identify delays in these models as well as other system
parameters. These results were developed jointly with J. A.
Burns and E. M. Cliff of Virginia Tech University and
published in a paper entitled, "Parameter identification for
an abstract Cauchy problem by quasilinearization." For
immediate reference, this paper is included in the appendix of
this report.

Similarly, certain distributed parameter models of
viscoelastic structures may also be formulated as an abstract
dynamical system. The models of interest contain Boltzmann
damping and, in particular, fractional derivative damping.
The numerical phase of this research effort was principally
concerned with the followint- aspects of the 9eneral bectliiq
described above:

(1) the development and testing of a numerical algorithm for
estimating parameters in a Volterra integral equation
arising from a viscoelastic model of a flexible structure
with Boltzmann damping;

(2) the implementation of numerical methods for a system of
Volterra equations resulting from a Galerkin
approximation of a partial differential equation with
hereditary effects.

Our principal research effort was directed toward the
development and estimation of distributed parameter models of
flexible structures with internal damping. The design of
control systems for flexible structures is highly dependent on
the amount of internal damping present in the structure.
Damping parameters typically change as materials and
geometries of the structures change. Accurate and efficient
identification algorithms are needed to estimate a system's
characteristics and implement a stable control algorithm.

In particular, we considered the partial differential
equation

PUtt) Eu (x,'t) + L gJ(t-s)u (x s)ds

+ f(x,t) (2)

on 0 < x < 1, t > 0, with appropriate boundary and initial
conditions. The function u(x,t) represents the longitudinal
displacement at position x and time t along a uniform bar of
density p where E is a stiffness parameter and f(x,t) is a
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forcing function. The function g(s) models damping effects.
The integral represents a Boltzmann-type internal damping term
which assumes that the stress is function of the strain and
the strain history. We studied fractional derivative damping
models in which the kernel function is given by an expression
of the form

g(s) = , s > 0, f > 0, 0 < a < 1.r(1-cX)s~

An estimation algorithm for a discretized form of equation (2)
was formulated and tested. Using simulated data, it was shown
to be means of identifying the parameters a and 0.

A Galerkin approximation of equation (2) using, for
example, linear splines in the space variable yields a system
of Volterra integro-differential equations with an integrable,
but unbounded, kernel. A gradient-based identification
algorithm for the parameters a and a was implemented in a
Volterra equation of the form

0
w(t) = Mw(t) + | K(-s)w(t+s)ds + F(t), t > 0,

w (0)= n, w s) = p(s), s < 0,

where 11 = 0 M 0 ( F(t) f= o and

K(s) - e-S 1 0 ), s > 0.F(l-a)s a 0 0 ,s>O

This involved the implementation of numerical methods for
solving the Volterra equation and its sensitivity equations
with respect to the unknown parameters. Where possible,
numerical results were checked against a closed-form solution
obtained by a Laplace transform method using software capable
of symbolic computation.

A gradient-based algorithm for identifying a singularity
in a weakly-singular Volterra integral equation was
established and numerically tested. These results were
published in the Journal of Integral Equations and
Applications in a paper referenced below. Additional
numerical results were published in Applied Numerical
Mathematics, also referenced below. For the immediate
reference this paper is included in the appendix together with
several figures which did not appear in the published version.

The Galerkin approximation of the hereditary partial
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differential equation model in the space variable gives rise
to a large system of Volterra equations with weakly singular
kernels. Our experience indicated the importance of an
accurate and efficient method for solving systems of this type
with non-smooth solutions. We employed a product integration
method in the time variable.

A class of fractional linear multi-step methods for the
numerical solution of weakly singulary Volterra equations was
investigated, but not found to be significantly superior to
product methods in this context. This was attributed to the
fact that linear multi-step methods require a priori knowledge
of the singularity. Numerical results indicated that the
convergence rates of these methods deteriorate in the absence
of this knowledge. In our context the singularity is among
the parameters to be identified so is not known a priori. Our
problem required a numerical integration scheme which is
robust over a wide range of singularities.

The final numerical results of this research effort
concerned a method for parameter estimation in a semi-discrete
approximation of the partial differential equation

Putt(x,t) = Eu xx(Xt)

+ l) aft e"0 (t-s) u (xs)ds + fl(xt)
r(l-a) at 0 (t-s)' X,

with boundary conditions u(0,t) = 0, u(l,t) = 0, and

initial conditions u(x,0) = u0 (X), ut(x,0) = ul(x).

Integrating with respect to t one obtains

t
Put(x,t) = Eo uxx(x,s)ds +

7 (eI) (t-s) u xx((xs)ds + f2 (xt)

r(l-a) 0 (t-s) 2

t
where f 2 (xt) = ofl(xs)ds + pul(x)-

We applied a Galerkin approximation in which the interval
[0,1] is divided into N equal parts and the homogeneous
boundary conditions allowed to approximate the solution by a

N
function of the form u(x,t) 0 a. _(t)jo (x) where 0j is a cubic

spline basis element. Substituting in the equation, taking an
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inner product with a basis element k' and integrating by

parts yielded a Volterra equation in t of the form

pANv(t) = -EDN v(s)ds -
I01 DNrt e-i 3(t-s)

SDJ N ev(s)ds + f 3 (t)
P(l-a) 0 (t-s)a

where AN and DN are N+1 x N+1 matrices depending on inner
products of •. and '.

The quasilinearization algorithm required that we solve
this equation along with its sensitivity equations obtained by
differentiating with respect to a and 0, the unknown
parameters. The sensitivity equations also have weakly
singular kernels so that the same numerical methods may be
applied. These results will be reported in the Proceedings of
the World Congress of Nonlinear Analysts. This paper in
included for reference in the appendix of this report.

Research articles

The following papers relating to this research effort were
published or will soon appear in refereed journals or as
invited papers in conference proceedings.

D. W. Brewer, Gradient methods for identification of
distributed parameter systems, Proceedings of the 28th IEEE
Conference on Decision and Control, December 1989, 599-603.

D. W. Brewer and R. K. Powers, Parameter identification in a
Volterra equation with weakly singular kernel, Journal of
Integral Equations and Applications 2(1990), 353-373.

D. W. Brewer and R. K. Powers, Parameter estimation for a
Volterra integro-differential equation, Applied Numerical
Mathematics 9(1992), 307-320.

D. W. Brewer and R. K. Powers, A direct method for parameter
estimation in distributed systems, Proceedings of the World
Congress of Nonlinear Analysts, August 1992, to appear.

D. W. Brewer, J. A. Burns, and E. M. Cliff, Parameter
estimation for an abstract Cauchy problem by
quasilinearization, Quarterly of Applied Mathematics 51(1993),
1-22.
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Abstract. A parameter identification problem is considered in the context

of a linear abstract Cauchy problem with a parameter-dependent evolution

operator. Conditions are investigated under which the gradient of the

state with respect to a parameter possesses smoothness properties which

lead to local convergence of an estimation algorithm based on quasi-

linearization. Numerical results are presented concerning estimation of

unknown parameters in delay-differential equations.
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1. Introduction

During the past fifteen years considerable effort has been devoted to

the problem of estimating unknown parameters in distributed parameter

systems. The recent book by Banks and Kunisch [91 provides an excellent

account of the progress made in the field. Many parameter estimation

problems are best formulated as optimization problems (sometimes over

infinite dimensional "parameter spaces") and algorithms are developed to

minimize an appropriate cost function. Although there are several

approaches to these problems, their infinite dimensional nature requires

that numerical approximations be introduced at some point in the analysis.

Consequently, there are two basic classes of algorithms for optimization

based parameter estimation. The first type of algorithm, and the most

frequently used for dynamic problems, is indirect and proceeds by initially

approximating the dynamic equations (e.g. finite elements, finite

differences, etc.) and then using optimizatiun algorithms on the finite

dimensional problem. This approach is typified by the papers [11-[6], [8],

[101, and [181.

The second more direct approach is based on the direct application of

an optimization algorithm and employing numerical approximations at each

step of the algorithm to compute the necessary solutions of the dynamic

equations. This approach is used in [12], (13], [171, and [191. Both

methods have advantages and disadvantages. Depending on the particular

type of distributea parameter system, one method may out perform the

other.

Although we shall consider only the problem of identifying a finite

number of parameters, the infinite dimensional dynamic constraint enters

into the optimization algorithm. Basically, the objective function from

parameter space to R is a composition of a finite rank map with an

operator (defining the dynamic constraint) on an infinite dimensional

space. Therefore, any method that requires gradients to be computed will

have to deal with the differentiation of the infinite dimensional

constraint, i.e. the chain rule is needed. It is in this sense that the

quasilinearization algorithm considered here has an "infinite dimensional"

nature.

10



Direct methods such as quasilinearization considered here are often

limited by the fact that the dependence on unknown parameters of the

Rolution ti the infinite dimensional dynamical equations may not be "smooth

enough" to establish convergence of the algorithm. Indeed, some algorithms

may not be properly defined without this necessary smoothness. Indirect

methods avoid this difficulty and often lead to easily implemented

algorithms. On the other hand, when direct methods can be applied it is

sometimes possible to establish the convergence and the rates of

convergence to the unknown optimal parameters (see [131, [19]).

T his paper considers the dependence on an unknown parameter q of the

solution of the linear abstract Cauchy problem

1(t) = A(q)x(t) + u(t), 0 < t < T,
(1.1) x(O) = XO0

Our ultimate g)al is to formulate and establish the convergence of a

gradient-based parameter estimation algorithm applicable in this abstract

setting.

This algorithm employs computation of the gradient D x(t;q) of theq

solution of (1.1) with respect to the parameter. Conditions for the

existence of this gradient are established in [11]. In Section 2 we review

these conditions and the general setting for the remainder of the paper.

Convergence of the algorithm requires certain smoothness properties of the

gradient D x(t;q) with respect to q. These properties are established inq

Section 3 and their applicability to a linear delay-differential equation

is discussed in Section 4. In this example the delay is among the

parameters so that in this setting the parameter dependence appears in

unbounded terms of the evolution operator A(q).

An abstract parameter estimation algorithm for a finite dimensional

parameter space using a discrete cost function is presented in Section 5.

In Section 6 its convergence is established using the results of Section 3.

In Section 7 we present several numerical examples which indicate the

performance of the algorithm for delay and coefficient estimation in linear

delay-differential equations. Additional examples may be found in [121.
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Numerical testing and evaluation on a wider variety of parameter estimation

problems will be undertaken in a subsequert paper.

2. The General Setting

The application of quasilinearization to parameter estimation requires

knowledge of the derivative of the state with respect to the unknown

parameter. This topic is addressed in [111. In this section we review the

framework used there to obtain differentiability and establish notation to

be used in the remainder of this paper.

Let P be an opvn subset of a normed linear space P with norm 1-1 and

let X be a Banach space with norm 11-11. For every q E P let A(q) be a

linear operator on D(A(q)) in X. Throughout this paper we assume

(Hi) A(q) generates a strongly continuous semigroup S(t;q) on X;

(H2) D(A(q)) = D is independent of q;

(H3) JjS(t;q)xll < Mewt JJxI, x E X, t > 0, q E D, for some constants

M and w independent of q, x, and t.

t

Fix T > 0 and u E LI (0,T;X). Define Q(t;q) = J'S(t-s;q)u(s)ds for q E P,

0

0 < t < T. Note that if (1.1) has a strong solution then it is given by

the formula x(t) = S(t;q)x 0 + Q(t;q) for 0 < t < T.

In applications of this theory it is useful to consider just those

terms of A(q) in which the parameter appears. To this end we write

A(q) = A + B(q) where A and B(q) both have domain D and A is independent

of q. Concerning B(q) we assume the following:

(H4) For every q, q0 E P there is a constant K such that

IIB(q)S(t;q 0 )xJidt < KllxJl for all x E D.

12



In Section 4 we discuss an example in which an unbounded operator B(q)

satisfies (H4). This hypothesis does imply, however, that the linear

mapping x -* B(q)S(*;q 0 )x is bounded as a mapping from D into L I(0,T;X).

Let F(q,q 0 ) denote the bounded linear extension of this operator to X. Let

1111, denote the norm in L'(O,T;X). Concerning F we assume the following:

(H5) There is clised subspace Y of X such that

(i) F(q,q 0 )x 0 E L1 (O,T;Y) for q, q0 E P, and

(ii) for every q0 E P and e > 0 there exists 5 > 0 such that

[IF(q,q 0 )y - F(q 0 ,q0 )yllI : -ilyll for y E Y and

Iq - q0o <

The analogue of F for the function Q(t;q) is the mapping G(q,q 0 ) from

LI(0,T;D) into LI (0,T;X) defined by

[G(qq 0 )w](t) = f B(q)S(t-s;q0)w(s)ds"
L00

By (114) is follows that G can be extended to a bounded linear mapping on

L (0,T;X) so that in particular G(q,q 0 )u is defined as an element of

L (0,T;X). In addition we assume

(H6) G(q,q 0 )u ( LI (0,T;Y) for q, q0 E P

where Y denotes the subspace required by (W5).
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3. Parameter Dependence

In this section we deduce smoothness properties of the solution

x(t;q) = S(t;q)x0 + Q(t;q) with respect to q. These properties are derived

from similar properties of F(q,q 0 ) and G(q,q 0 ) which are operators related

to A(q). These results will be used in Section 5 to prove convergence of

the parameter estimation algorithm. Throughout this section T > 0, x0 E X,

and U E LI (0,T;X) are fixed as given in (1.1). The symbol D denotesq

Frechet differentiation with respect to q. These results are given as a

series of lemmas whose proofs are at the end of this section.

Lemma 3.1. Suppose (H1) - (H5) hold. In addition, suppose that for a

given q* E P

(17) F(q,q 0 )x 0 is Frechet differentiable with respect to q at q0

for every q0 E P.

For brevity, let DF(q0) denote Dq[F(q,q 0 )x 0] q=q0 for q0 E P. In addition

suppose

(118) DF(q) is strongly continuous in q at q*, that is, for each

h E F the mapping q * DF(q)h from P into L I(0,T;X) is

continuous at q*.

Then for each t et[0,T], S(t;q)x0 is Frechet diffentiable with respect to q

at every q E P and D q[S(t;q)x 0 is strongly continuous with respect to q

at q*.

Lemma 3.2. Suppose (HO) - (H6) hold and in addition suppose that for a

given q* E P,

14



(H9) G(q,q 0 )u is Frechet differentiable with respect to q at q0

for every q0 E P.

Again denoting this derivative by DG(q 0 ) for q0 E P, assume

(H10) DG(q) is strongly continuous in q at q*.

Then for t E [0,T], Q(t;q) is Frechet differentiable with respect to q at

every q E P and D q[Q(t;q)] is strongly continuous in q at q*.

Lemma 3.3. Suppose (HI) - (H5) and (H7) hold and in addition suppose

(H11) F(q,q*) is locally Lipschitz continuous in q at q*, uniformly

for y E Y, that is, there exist constants K1 , 6 > 0 such that

fJF(q,q*)y - F(q,q*)ylj 1 < KIq - q*j IIYII

whenever Iq - q*j < 6 and y E Y.

Moreover, assume that

(H12) DF(q) is strongly locally Lipschitz continuous with respect

to q at q*. That is, for each h E F, there are constants

K, 6 > 0 such that

IIDF(q)h - DF(q*)h)l < Kjq - q*1

for Iq - q*< 6.

Then D q[S(t;q)x is strongly locally Lipschitz continuous with respect to

q at q* for every t E [0,T].
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Lemma 3.4. Suppose (Hi) - (H6), (H9) - (H1O) hold and in addition suppose

(H13) DG(q) is strongly locally Lipschitz continuous with

respect to q at q*.

Then D q[Q(t;q)] is strongly locally Lipschitz continuous with respect to q

at q* for every t E [O,T].

Although the assumptions (H1) - (H13) are rather technical, we shall

see that they can be easily verified for delay systems even in the case

that the unknown parameter is the delay itself. Therefore, the results

presented here remove the limitations placed on the perturbation B(q) in

papers [13] and [16].

For completeness we now present the proofs of Lemma 3.1 - Lemma 3.4.

However, these proofs make use of the basic results found in [111 and in

order to keep the length of the proofs reasonable we assume that the reader

has [11] in hand.

Proof of Lemma 3.1. It is shown in 111] that (H1) - (H5), (H7) imply that

Dq[S(t;q)x0] exists for q E P. Furthermore, it is given by the formula

(3.1) Dq [S(t;q)x0 ]h = f S(t-s;q)[DF(q)h](s)ds, h E P.

We therefore obtain by substitution

(3.2) Dq[ S(t;q)xo0 Ih - Dq [S(t;q*)x 0 ]h

t=f[S(t-s;q) - S(t-s;q*)]([DF(q)hl(s))ds

0

+ ftS(t-s;q*)([DF(q)h](s) - [DF(q*)h](s))ds.
v0
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Let c > 0 be given and let C = MeWt. It can be shown (see the proof of

Theorem 1 [111) that for all x E X

(3.3) JIS(t;q)x - S(t;q*)xll ! CIfF(q,q*)x - F(q*,q*)xjll.

Combining (3.3) with (H5ii) shows that for some 61 > 0

JIS(t,q)y - S(t;q*)yll < CC[Iylj, 0 < t : T, y E Y,

whenever Iq - q*<1 61. In particular, putting y = [DF(q)h](s) E Y by

(H5i) we obtain

ll[S(t-s;q) - S(t-s;q*)][DF(q)h](s)ll : cCjC[DF(q)h](s)Ij

for Iq - q*< 6b, a.e. s E (0,T). Since DF(q)h is continuous at q*, there

exist constants K2 , 6 > 0 such that
2'

IIDF(q)hbI 1 : K2 for Iq - q*< 62.

Combining these estimates shows that the first term in (3.2) is bounded

by ECK 2 if Iq - q*j 5 min(6,6 2).

Using (H8) it is easy to see that there exists 63 > 0 such that the

second term in (3.2) is bounded by cC for jq - q*< 63. These estimates

complete the proof of Lemma 3.1.
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Proof of Lemma 3.2. By Theorem 3 of [111, D q[Q(t;q)] exists for q E P and

(3.4) D q[Q(t;q)] - D q[Q(t;q*)]

= f [S(t-s;q) - S(t-s;q*)][DG(q)(s)]ds

0
t

+ f S(t-s;q*)[(DG(q))(s) - (DG(q*))(s)]ds

where u has been suppressed in the notation. Since DG(q) E L (O,T;Y) for

q E P by (H6), the proof follows exactly as in the proof of Lemma 3.1.

Proof of Lemma 3.3. Let c > 0 be given. By (3.3) and (H11) there exists

6 > 0 such that

IIS(t;q)y - S(t;q*)yll 5 CK1 IjyIjjq - q*j

for y E Y and jq - q*j < 6 . Since DF(q)h E L (O,T;Y) by (Hli) we have as

in the proof of Lemma 2.1 that the first term of (3.2) is bounded by

K K Iq - q*1 for Iq - q*f < min (61,62). An estimate of the same form is

easily obtained for the second term of (3.2) using (H12). These estimates

complete the proof of Lemma 3.3.

Proof of Lemma 3.4. Since DG(q)u E LI (o,T;Y) by (M6), the proof follows

exactly as in the proof of Lemma 3.3 using (3.4) in place of (3.2).

4. Application to a Delay-Differential Equation

In this section we apply the framework of the previous sections to the

linear delay-differential equation

18



n
( (t)= a 0 x(t) + E akx(t -qk) + u(t)

k=1
(4.1) x(0) =

x0 =

Let P = Rn, fix r > 0, and let P = {q = (qlq 2 , . . . , qn 0 < qk < r

for k = 1,2,. . ,n. In equation (4.1), 7 E R, ak E I, k = 0,1,. .. ,n,

P E Ll(-r, 0) with norm denoted by II11pI, u E L'(0,T), and xt(s) = x(t+s)

for t > 0, -r < s < 0. By a solution of (4.1) we mean a function x which

is absolutely continuous on [0,T] and satisfies (4.1) almost everywhere on

(0,T).

Following the construction in [141, we take X = IR X L (-r,O) with norm

jj(;?,oj)I = Jjj + 11pII, and define for q E P an operator A(q) on

D = {(Ee) E X: 9 is abs. cont. on [-r,01, ý E Ll(-r,0), and

P(O) = 77)

by

n
)(q),p) = (a 0 V(0) + E ak(-qk),

k=1

Then is well known that A(q) generates a strongly continuous semigroup

S(t;q) on X satisfying S(t;q) = (y(t), yt) where y(t) = y(t;q) denotes the

solution of (4.1) with u = 0. It is a consequence of standard results that

(Hi) - (H3) hold in this setting.

For q = (qi'" .,qn) and q0 in P, (q,p) E X, and w E LI(0,T) it

follows that in this example the mappings F and G of Section 3 are given by
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n
(4.2) F(q,q 0 )(0,,p) = ( E akY(-qk;q0) 0 )

k=1

and

n
(4.3) [G(q,q 0 )w](t) = ( k akz(t-qk;q 0 ), 0 )

k=1

for a.e. t E (0,T) where z(t;q) denotes the solution of (4.1) with u = w

and 07,p) = (0,0). It is shown in [ii] that these mappings satisfy

(H4) - (H6) with the closed subspace Y = R x (01. It is also shown in [Ii]

that F and G satisfy the differentiability hypotheses (H7) and (H9) for

(1,P) = x0 E D and qq 0 E P. Furthermore, their Frechet derivatives are

given by

n
(4.4) [DF(q)h](t) = ( - Eak( t-qk ;q)hk' 0 )

k=1

and

n
(4.5) [DG(q)hI(t) = ( - E ak;(t-qk ;q)hk' 0 )

k=1

for q E P, h = (hi,. .,hn) E In, where y(t;q) is the solution of (4.1)

with u = 0 and z(t;q) is the solution of (4.1) with (7,p) = (0,0).

It remains to establish conditions under which (M8), (MIO) - (H13) are

satisfied.

Lemma 4.1. Fix q* = (q* . *.,q*) E P and x E D. Then F(q,q*)x 0 as
I n 00

defined by (4.2) satisfies (H11).

Proof: In Section 5 of (111 it is shown that there are constants C and
2
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62 > 0 such that

IF(q*+h,q*)(i7,O) - F(q*,q*)(p7,O)jI 1  : C2 1hI1(1 ,0)1I

n

for h E In, 17 E I, Ihi b 2" Here we define -hI E Ih kI. This estimate
k=1

is equivalent to (H11) with Y = R x (0}.

Lemma 4.2. Suppose x0 = (tj,p) E D. Then DF(q) as given by (4.4) satisfies

(H8). Moreover, if in addition ý is of bounded variation on [-r,0], then

DF(q) satisfies (H12).

Proof: Let A = max lakI and IhI = max IhkI. Then we obtain the estimatek k

n T
(4.6) IIDF(q)h - DF(q*)hllj A Ih I E (-q;q) - *(t-qk;q*)Idt

n T

+ AmIhi E 10(t-qtk;q*) - f(t-qk;q*)ldt.
k=1 0

Now from (4.1) we obtain

(4.7) fl(t-qk;q) - Y(t-qk;q*)Idt f 11(t;q) - ý(t;q*)Jdt

0 0

n T
E J y(t q";q) - y(t-qý;q*)IdtM j=l 0 t-,

nJ

Am E Iy(t-q;q) - y(t"q.;q*)Idt"J = 1 0 t-j, - -q ,

+ Am E lf~y(t-qj;q*) - y(t-qt;q*)Idt
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n T
<A M E ly(t;q) - y(t;q*){dt

j=1 0

n T
Amf• ylY(t-qj;q*) - y(t-q!;q*)Idt.

Now since y(t;q) = S(t;q)x0 is differentiable with respect to q it is not

difficult to show that there are constants # and 6 such that

(4.8) J0y(t;q) - y(t;q*)jdt < 81q - q*j
0

whenever Iq - q*j < 6. Combining (4.7) and (4.8) with (4.6) yields

(4.9) IDF(q)h - DF(q*)hll < A2 Ihlnj9q - q*1

n T
"+ A2IhinE f_ y(t-q ;q*) - y(t-q*;q*)Idt

"+ AmIhI E jfTy(t-qk;q*) - ;(t-q*;q*)Idt
m k= k k

Since (n,P) E D, we have y and ' in Ll(-r,T). Therefore, the integral

terms in (4.9) approach zero as q -+ q* and (H8) holds. If ý is of bounded

variation on [-r,0], then y and ý are of bounded variation on [-r,TI. By

[15, Theorem 2.1.7(b)] this implies that the integral terms in (4.9) are
O(Jq - q*[) as q -+ q* so that (H12) holds.

Lemma 4.3. Suppose u E LI (0,T). Then DG(q) as defined by (4.5) satisfies

(H10). Moreover, if in addition u is of bounded variation on [0,T), then

DG(q) satisfies (H13).
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Proof: Using (4.5) in place of (4.4) one obtains the estimate (4.9) above

with y replaced by z. Now if u E LI (0,T) then z and ; are in L (-r,T) so

that (H1O) holds. Similarly, if u is of bounded variation on (O,T], then z

and ; are of bounded variation on [-r,T] so that (H13) is satisfied.

5. The Algorithm

In this section we define an estimation algorithm over a finite

dimensional parameter space based on quasilinearization and establish local

convergence using the results of Section 3. In particular, we assume that

the parameter space P is IR nwith canonical basis ei, i = I, 2,. . ., n.

This algorithm can also be cast in a separable Hilbert space as in [17].

Given x0 E D and q E P C In a strong solution of (1.1) is given by

S(t;q)x 0 + Q(t;q). Here we have used the notation of Section 2. Let C be

a bounded linear mapping from X into IRZ and define

-Y(t;q) = C[S(t;q)x 0 + Q(t;q)].

The parameter estimation algorithm is related to the following optimization

problem.

Problem 5.1. Let yj E R , j = 1. 2, ., m be data values taken at

times t. E [0, TI, j = 1, 2, ., m, respectively. For q E P define the3

quadratic cost function

m

J(q) = E Iy(t.;q) - yj
j= l 3

Find q* E P such that J(q*) ! J(q) for all q E P.

23



The quasilinearization method defines a recursive algorithm whose

fixed point is a local solution of Problem 5.1. A more complete

exposition is given in 171. Given an initial guess q0 E P define

qk+1 = f(qk)' k = 0,1,2,3,...

where

f(q) = q - [D(q)]-lb(q)

m
D(q) = E MT(t.;q)M(t.;q)

j=1 j

m Tb(q) M T(tj;q)[,y(tj~q) - yj]

j=1 J 3

and the matrix M(t;q) has its ith column Mi (t;q) given by

M i(t;q) = CD q[S(t;q)x0 + Q(t;q)]ei, i = 1,2,3,...,n.

Lemma 5.1. Suppose the hypotheses of Lemmas 3.1 and 3.2 are satisfied.

Then M(tj;q) is continuous in q at q*.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2 and the above

definitions.

Lemma 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied.

Then there exist constants a, 6 > 0 such that

IM(tj;q) - M(tj;q*)l ! alq - q*'.

for Iq - qj 5 6, j = 1,2,.... m.
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Proof. This is a direct consequence of Lemmas 3.3 and 3.4 and the above

definitions.

Note that although the smoothness results of the previous sections

hold for an infinite dimensional parameter, the implementation of the

solution of Problem 5.1 by this method is limited to finitely many

parameters. In fact a simple rank argument is used in [171 to show that

if the number of parameters, n, exceeds the number of data values, ml,

then the matrix D(q) is singular. In [171 a pseudo-inverse is proposed as

a means of solving the underdetermined problem.

We can now prove the following convergence results. These results are

typical of quasilinearization methods and the proofs given here are in the

same spirit as those in [7]. We obtain superlinear convergence when there

is an exact fit to data (Theorem 5.1) and linear convergence in the

presence of error (Theorem 5.2).

Theorem 5.1. Suppose the hypotkeses of Lemmas 3.1 and 3.2 are satisfied.

Moreover, assume [D(q*)]-I exists, f(q*) = q*, and J(q*) = 0. Then for

every e > 0 there exists b > 0 such that

jf(q) - f(q*)j • clq q*j

for Iq - q*j : 6. In particular, there is a neighborhood U of q* such that

qk + q* as k -+ w whenever qo E U.

Proof. Note that f(q*) = q* implies that b(q*) = 0, or

m

(5.1) 1 I1(tj;q*)[y(tj;q*) - yj = 0.
j=1
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Therefore

f(q) - f(q*) =D(q) -1[(q)(q -q*) -b(q)]

= D(qrl[ MT(t.;q)[M(tj;q)(q - q*) - ('y(tj;q) - j)n
lj=1

= D(q) 1  MT(t.qMtq)-Mt;)Iq-)

- D(q) m T M(tj;q)[1y(tj;q) - y(tj;q*) -M(t.;q*)(q q*)]
j=1

- D(qY' m MTjq[ytq* Y-j

j=1 J.

Therefore, using (5.1) we have that

(5.2) f(q) -f(q*)=

-~mT

D(q)- E M (t.;q)[M(t.,;q) - M(t.;q*)](q -q*)

j=1

-D(q)- 1M (t.;q)[-I(tj;q) - -t(t.;q*) - M(t.;q)(q -q*)]

j=1

T T
-D(q) E [M (t.;q) - M (tj;q*)1I-y(t.;q*) -y

j=1

Note that D(q)- exists and is bounded in a neighborhood of q* since
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D(q*)-I exists by assumption and D(q)-I is continuous at q* by Lemma 5.1.

Let t > 0 be given. Using Lemma 5.1 it is easy to see that there

exist constants I8, 61 > 0 such that the first term in (5.2) is bounded by

E,3 q - q*j for Iq - q*j • 6 . Furthermore, since M(tj;q*) is the Frechet

derivative of -/(t.;q) at q*, one can show that there exist constants

21 b2 > 0 such that the second term of (5.2) is bounded by 2l Iq - q*1 for

Iq - q*< 5 62. Combining these estimates with (5.2) yields

(5.3) If(q) - f(q*)l

m T
lq - q*l + ID(p)-I1 E IMT(tj;q) - M (tj;q*)I I-y(tj;q*) - yj*,

j=1

for Iq - q*l < 6 = min (6,6 2) and =1 + P.2 Since J(q*) = 0, the last

term in (5.3)is zero. This estimate yields the desired result.

The following theorem does not require an exact fit to data, but does

place some technical restrictions on the behaviour of M near q*. Note

that if Lemmas 3.3 and 3.4 hold then there exists • > 0 such that for

0 < 6 < • there exists a constant K(6) such that

m T T
E IM (tj;q) - (tj;q*)l j K(6)jq - q*J

j=1

for Iq - q*j : b. Let K* = lim sup K(b) and define
6 1 0

(5.4) A*= K*ID(q*)-II maxIy(tj;q*) - .
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Theorem 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied.

Moreover, assume [D(q*)]- exists and f(q*) = q*. Let A* be defined by

(5.4) and assume A* < 1. Then there exists 6" > 0 such that

If(q) - f(q*)l < A*jq - q*i

for Iq - q*j < 6P. In particular, qk - q* as k 4 w whenever

iq0 - q* < 5•*

Proof. This estimate is a direct consequence of (5.3).

6. Numerical Examples

In this section we consider several examples in which the above

algorithm was used to solve parameter estimation problems in delay-

differential equations. In these examples the emphasi: is on delay

identification since in the abstract setting this represents an unbounded

perturbation of the generator as noted in Section 4.

With the exception of Example 6.8, the various unknown parameters are

estimated using data generated from closed-form expressions for the

solution found by the "method of steps". The algorithm is implemented by

an averaging scheme 121 which approximates the state equation and the

associated sensitivity equations by a system of ordinary differential

equations. This system is solved by a fourth-order Runge-Kutta routine.

In the one delay examples the averaging scheme is implemented with the

delay interval [-r,O] divided into sixteen equal segments, except that

Example 6.8 uses 64 equal segments. In the two delay examples the

intervals [-r2, -ril and [-rl,0] are divided into sixteen equal segments.

All computations were done on a VAX 11/750 minicomputer or a SUN

Microsystem at the Institute for Computer Applications in Science and

Engineering (ICASE).
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Example 6.1. This example illustrates the rapid convergence of the method

for a single unknown parameter--the delay in the following equation--with

an initial guess which is an order of magnitude greater than the "true

value" of r = 1.0. The equation and the results of the iteration are given

below.

{ (t) = -2x(t) + 3x(t-r), t > 0

x(t) = t + 1, t < 0

iterate r error

0 10.000 34.056

1 1.299 0.955

2 0.946 0.175

3 0.989 0.115

4 0.987 0.115

The convergence of the states to ten data points on the interval [0,21 is

illustrated in Figure 1.

Example 6.2. The data is the same as for Example 6.1, however in this case

the algorithm is asked to estimate the coefficients as well as the delay.

The equation shows an insensitivity to the individual coefficients which

leads to the inaccuracy in the converged estimates. In fact, because of

errors introduced by the averaging scheme for computing the state, the

estimated values fit the data better than the "true values" used to compute

the data by the method of steps. The "true values" are a = -2, b = 3, and

r = 1. The equation and the results of the iteration are given below:

; (t) = ax(t) + bx(t-r), t > 0

x(t) = t + 1, t < 0
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iterate a b r error

0 -4.000 7.000 2.000 3.379

1 -0.815 3.537 1.184 2.968

2 -1.596 3.342 1.122 0.775

3 -2.403 3.713 1.002 0.188

4 -2.250 3.361 1.015 0.094

5 -2.352 3.483 1.006 0.093

The convergence of the states is illustrated in Figure 2.

Example 6.3. This case illustrates the effect of a forcing function on the

state equation. The nonhomogeneous delay-difierential equation

; (t) = ax(t) + bx(t-r) + u(t), t > 0

x(t) = t + 1, t < 0

where

O t <0.1

u(t) = { t 0.1

is solved in closed form by the method of steps with parameter values

a = -2, b = 3, r = 1 as in Example 6.2. The results of the parameter

estimation algorithm are given below:
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iterate a b r error

0 -4.000 7.000 2.000 4.0527

1 1.022 3.165 1.140 39.2657

2 -2.637 23.652 1.168 24.9577

3 -5.979 28.631 1.141 11.6964

4 -8.034 23.250 1.118 3.5425

5 -5.167 5.417 1.028 2.0471

6 -1.239 4.195 1.008 4.8981
7 -2.861 6.222 1.005 1.8930

8 -2.485 3.795 0.998 0.0819

9 -2.115 3.201 1.013 0.0724

10 -2.247 3.380 0.998 0.0691

The results are similar to those of Example 6.3, except that the solution

has become somewhat more sensitive to the coefficients.

Example 6.4. This example indicates the ability of the algorithm to

estimate two unknown delays. The algorithm converges rapidly from a

relatively poor initial guess. The "true values" are rI = 1.0 and

r2 = 2.0. The equation and the results of the parameter estimation

algorithm are given below and the convergence of the states to ten data

points on the interval [0,3] is illustrated in Figure 3.

{ (t) = -x(t) + x(t-rI) - x(t-r 2 ), t > 0

x(t) = t + 1, t < 0

iterate rI r 2  error

0 0.600 4.000 7.500

1 1.569 3.216 2.295

2 1.146 2.100 0.100

3 0.977 1.998 0.034

4 0.978 2.003 0.032
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Example 6.5. The equation and data for this example are the same as in

Example 6.4. In this case the initial guess reverses the order of the

"true" delay values. The results of this iteration are given below and

covergence of the states on the interval [0,31 is illustrated in Figure 4.

iterate r1  r 2  error

0 2.000 1.000 2.460

1 0.483 1.151 1.379

2 1.561 2.014 0.788

3 1.100 2.072 0.077

4 0.980 2.002 0.033

Example 6.6. In this case the algorithm is asked to estimate parameters in

a delay model of a system with no delay. Ten data points on the interval

[0,2] are computed from the exponential solution of

x *(t) = -2x(t)
x(0) = 1

and the algorithm is asked to estimate unknown parameters in the system

{ x(t) = ax(t) + bx(t-r), t > 0

x(t) = t + 1, t < 0

The first four iterations are given below:

iterate a b r error

0 -3.000 3.000 2.000 1.2577

1 -3.060 -0.637 1.947 0.2551

2 -1.687 0.235 1.981 0.1144

3 -.1.967 0.025 1.985 0.0110

4 -2.000 0.000 1.986 0.0001

On the fifth iteration the algorithm aborted when it was asked to invert a
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nearly singular matrix. This reflects the fact that at the true parameter

values the state is completely insensitive to the delay.

Example 6.7. This case is the same as the previous example except that the

data is taken from the closed form solution of the nonhomogeneous undelayed

equation

{ V(t) = -2x(t) + u(t)
x(o) = 1

where u is the same step function as in Example 6.3. The results are

similar to those of the previous example.

iterate a b r error

0 -3.000 3.000 2.000 1.3135

1 -2.848 0.099 1.804 0.5121

2 -1.841 0.138 2.401 0.0811

3 -1.971 0.003 2.508 0.0197

Example 6.8. In this example we consider the second-order equation

d2x(t) + W2x(t) + a0 L(t-r) + alx(t-r) = u(t), t > 0,
dt 2 0d

x(t) = 1, t < 0,

where u(t) is the step function of Example 6.3. This equation models a

harmonic oscillator with retarded damping and restoring forces. In [131 a

quasilinearization algorithm is used to estimate coefficients in this

equation. The methods of this paper allow the delay r to be added to the

set of unknown parameters. For this example the averaging method was used

to compute "data" values for the parameter estimation algorithm with "true"

values of w = 6, a0 = 2.5, a1 = 9, and r = 1. The results of the iterative

algorithm are given below and the convergence of the states (displacement

and velocity) on the interval [0, 21 is illustrated in Figures 5 and 6.
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iterate w a0  a r error

0 4.100 4.600 6.300 1.500 15.212

1 5.073 6.025 -8.338 0.918 15.181

2 6.705 4.710 -0.682 1.524 12.389

3 6.188 -14.677 -4.838 1.102 31.950

4 5.902 12.347 8.396 1.068 25.234

5 5.964 2.994 8.980 1.061 2.186

6 5.995 2.416 9.016 1.004 0.344

7 6.000 2.503 8.999 1.000 0.007
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PARAMETER IDENTIFICATION IN A VOLTERRA EQUATION

WITH WEAKLY SINGULAR KERNEL 1

Dennis W. Brewer 2

and

Robert K. Powers

Department of Mathematical Sciences
University of Arkansas

Fayetteville, Arkansas 72701

Abstract. We consider identification of parameters in a
Volterra integro-differential system with a weakly singular
kernel. Such kernels arise in fractional derivative damping
models of viscoelastic materials. The Volterra equation is
cast in a semigroup setting to establish results on the
differentiability of the solution with respect to a parameter.
These results are needed for convergence of the identification
algorithm. Numerical results are presented.

1. Introduction. In this paper we consider the identification
of parameters in a Volterra integro-differential equation with
a singular kernel. The equation of interest has the form

t
w(t) = Mw(t) + f K(t-s,p)w(s)ds + F(t), t a0,(1.1) {-.

w(0) = -a, w(s) = 0(s), s < 0,

iThis research was supported by the Air Force Office of
Scientific Research under grant AFOSR-89-0472.

2 This paper is dedicated with gratitude to my thesis advisor,
John A. Nohel, on the occasion of his sixty-fifth birthday.

43



where M is an n x n constant matrix, 71 . n L1 , cL on

and K(.,p) is an n x n singular kernel depending on a
parameter p contained in an admissible parameter set. We are
particularly interested in a kernel function of the form

g(s,p) = , s > 0,

where r(-) denotes the gamma function, p = (a,0,7) e R3 with
0 s a < 1 and P > 0. Such kernels arise in the study of
fractional derivative models of viscoelastic structures. For a
more complete discussion of the origins of this kernel and the
viscoelastic models we refer the reader to (12], (18], (13],
(15], and in particular to (17] and the extensive bibliography
therein.

Banks, et.al. (2] have identified parameters
corresponding to p and 7 in a similar (but different) model,
but assumed that a was known. Torvik and Bagley [1], [18] have
estimated the parameter a, but in the Laplace transform
domain. In this paper we restrict ourselves to identifying a
only, though the theory may be modified to include a and 7 as
well.

In order to relate equation (1.1) to a (idealized)
physical model, consider the longitudal motions of a uniform
bar fixed at both ends with Boltzmann type damping. The
governing equation is ([9], [14])

Sat )gxt-su(x,s)dsputt(x,t) =- Ux(X,t) + f (x- }(1.2) ax10

+ f(x,t), 0 < x < x , t > 0,

with boundary conditions u(O,t) = 0, u(1,t) = 0,

and initial conditions u(x,O) = d(x), ut(x,O) v(x).

Here, u(x,t) represents the axial displacement of position x
at time t, p is the density of the material, E a stiffness
parameter, f(x,t) a forcing function, and

g(s) = r(1- )sa

represents a fractional derivative damping term modified to
have exponential decay (12].

A common approach to the parameter identification problem
(4] is to apply a Galerkin-type approximation scheme to the
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beam equation and then incorporate some type of identification
algorithm to the approximating system of integro-differential
equations. If one applies a Galerkin scheme to equation (1.2)
(e.g. using linear splines), one obtains a system of equations
of the form

(1.3) A4-2(t) = Bv(t) + Ca [0g(t-s)v(s)ds + F(t)

A A 
AIn this equation A, B, and C represent constant matrices and

v(t) and F(t) are vectors of appropriate dimension.
In order to retain the salient features but simplify the

analysis in the following sections, we shall consider the
following scalar version of (1.3)

(1.4) - (t) = ax(t) + H--f g(t-s)x(s)ds + f(t),

x(0) = x 0 , k(O) = x

Integrating (1.4) we obtain

x(t) = a f x(s)ds + [g(t-s)x(s)ds + f(t),(1.5) 0()
x(0) =x0j,

t^
where f(t) = xI + f f(s)ds

t

Define z(t) = , x(s)ds then z(t) = x(t) and we obtain
0J

the system of integro-differential equations

t
(1x(t) = az(t) + [ g(t-s)x(s)ds + f(t),(1.6)O

z(t) = x(t),

with x(O) = x 0 , z(O) = 0.

A standard assumption in viscoelasticity [13] is that the
material is in an unstrained state for time t < 0. This would
correspond to u(x,s) = 0 for s < 0 in equation (1.2). It
follows then that x(s) = 0 and z(s) = 0 for s < 0 in (1.6). If
we define w(t) = col(x(t),z(t)), then w(t) satisfies
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t
((t) := Mw(t) +• (t-s)w(s)ds + F(t),

W =) 7= 0

where M= 0 K(s) = 0 0 ,and F(t) = f "

Since w(s) = col(0,0) for s < 0, we may rewrite (1.7) as

t
w(t) = Mw(t) + [tK(t-s)w(s)ds + F(t),

w(O) = 0  w(s) = (), s < 0,
00

which is in the form of equation (1.1).

The remainder of the paper is outlined as follows. In
Section 2 we review previous results that place equation (1.1)
in a semigroup setting in order to establish existence of
solutions. Differentiability results needed for the parameter
estimation algorithm are then proved. In Section 3 the
quasilinearization algorithm used for the identification
procedure is discussed along with convergence results.
Numerical examples are given in Section 4.

2. The abstract setting. In this section we develop an
abstract framework for the Volterra integral equation
discussed in the previous section. Namely, we will consider
equation (1.1) in the form

t

(w(t) = Mw(t) + [ K(-s,a)w(t+s)ds + F(t), t > 0,
(. w(0) = w, w P ( (s), s < 0,

where =q 0 ( J R2, M = ( a ), F(t) = (t)jand
02) 1 0 0

(2.2) K(s,ca) 7e 13 ( 1 0 ), s > 0.
( a)s a ( 0 0 ,46
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We assume g is a positive constant and 0 s a < 1. By a
solution of (2.1) we mean a function w: (-,m) - R2 such that
w is absolutely continuous (A.C.) on [0,w) and satisfies the
integral equation a.e. on [0,ol, w(0)= n, and w(s) = V(s)
a.e. on (-00,0].

Our semigroup formulation follows the construction in [5)
as further devoloped in [10] and (11]. Define the product
space X = R2 x L (-w, O) with norm
11(7,P)11X = 1711 + III1 L (_.,0)' Consider the homogeneous

equation

t{ '(t) = My(t) + o K(-s,o)y(t+s)ds, t > 0,(2.3) -o

y(0) = n, y(s) = ((s), s < 0.

Then for each pair (n,p) e X, (2.3) has a unique solution, and
moreover the mapping S(t,cx)(71,V) = (y(t),yt(.)) defines a

C0 -semigroup on X. Here we have used the notation

Yt(s) = y(t+s), t a 0, s < 0.
Fix c e (0, 1) and define the parameter set P [0, l-c].

Then it is readily seen from (2.2) that there is a constant C,
independent of a, such that

(2.4) { IK(s,a)ids s C for all a e P.
J0

Under this condition it is shown in [10] and [11] that the
semigroup S(t,a) is generated by a closed and densely-defined
operator 4(a) defined by

Dom(A(a)) D {(pq) e X: p is A.C. on compact subsets

of (-c,0], 1P e L (-00,0), V (0) = 71)

and

= (Mq + f0K(-s,a)V(s)ds, V ) for (n,p) e D.

Our task is to show that the solution w(t,a) a w(t) of
(2.1) is differentiable with respect to a and that this
derivative is sufficiently smooth to establish the local
convergence of the algorithm defined in Section 3. This
involves verifying the conditions in the semigroup setting
established in [6] and (8]. We therefore assume in what
follows that the reader has these papers in hand.

Since we are interested in dependence on a, we write
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A(a) = A + B(a) where A is independent of a and
0

(2.5) 2(a)(71, V) f ( 00 K(-sa)((s)ds, 0 ), e D.

Note that the range of B(a) is the finite-dimensional space
Y = R x (0).

Fix Y0 E X, a 0 e P, and T > 0. Then the

differentiability with respect to a at a 0 of the solution

y(t,a) of (2.3) is a consequence of the following theorem.

Theorem 2.1. For every t e [0,T], S(t,a)y0 as defined above

is Frechet differentiable with respect to a at a0 and its

derivative is given by
t

D S(t, 0 )y 0 = S(t-s,a0)[DaY(a0)y0(s)ds, 0 s t s T,
0

where Y(a) is for each a Q P a mapping from X into L1 (0,T;X)
defined by

0
(2.6) [c(a)yo](t) = ( f K(-s,a)y(t+s)ds, 0 )

for y0 e X, 0 s t -5 T. Recall that y is the solution of (2.3)

with (11,V) = y0 .

Proof: This result is proved in [7] for a general Volterra
kernel K(s,a) satisfying condition (2.4) under the following
hypothesis:

the mapping a 4 K(.,a) from P into L I(0,w) is Frech~t
(2.7) differentiable with respect a at a0 *

Recall that K(s,a) = g(s,a) I where

g(s,a) - e= a S > 0, a e P.
P(l-a) s

Let ' denote differentiation with respect to a. Then
computation shows that g' and g" are of the form

g'(s,a) = gl(a)(in s)e-•Ss-a + g2(a)e-gss-a
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and 2- a-s-g"(s,'a) = g 3 (a) (in s) 2e- S- + g 4 (a) (in s)e- Ss-a

+ g5 (~e-13Ss -a+ g 5 (a)e- s-

where gl'. . .,g 5 are continuous functions of a on P which can
be explicitly calculated in terms of the gamma function and
its derivatives. Important properties of g' anq g" for our
purposes are that there are functions Oi' @2 e L (O,w) such

that

(2.8) Ig'(sa)l S 01(s) for s > 0, a e P,

and

(2.9) Ig"(s,a)I S @2(s) for s > 0, a e P.

For example, one can take

f(MIIln sle-1s + M 2e-S)/s -C, for 0 < s < 1

SM1 Iln sle-s + M2e-gS, for s a 1,

where M1 and M2 are upper bounds on P of Ig1 (e)l and 1g2 (a)",
respectively. There is an analogous expression for 02(s).
Therefore, by Taylor's theorem with remainder, we obtain

IK(s,a + h) - K(s,a) - K'(s,a)hl

= Ig(s,a + h) - g(s,a) - g (s,a)hl

= lg"(s,Cl(s))h 2/21

: @20(s)Ih 2/2
for s > O, a, a + h e P, and CI(s) between a and a + h.

Integrating this inequality over (0,w) and using @2 e L (0,-)

yields (2.7) and completes the proof of Theorem 2.1.
A sufficient smoothness property for the local

convergence of the parameter estimation algorithm is
established in the following theorem.

Theorem 2.2. For every t e [0,T], a* e P and y0 e X,

DaS(t,a)y 0 is strongly locally Lipschitz continuous with
respect to a at a*.
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Proof: The proof relies on Lemma 3.3 of (8]. We must show
that hypotheses (HI1) and (H12) of that paper hold in this
application. By definition (2.6), (HI1) requires that there
exist constants KI, 6 , > 0 such that

ST 0
(2.10) f 0 11I_(K(-s,a+h) - K(-s,a))y(t+s)dsldt s K1 IhI IT

for Ihi s 61, where y is the solution of (2.3) with a = a* and

S=-- 0. Note that since (y (t) ,Yt) = S (t ,a o0 ) (n ,0) we have

Iy(t) I s Mle6t In! for t t 0, and y(t) = V(t) = 0 for t < 0.

It is shown in (7] that the constants M1 and w may be taken
independently of a E P. Therefore, by Fubini's theorem and
the mean value theorem we obtain

,f .f l(K(-s,a+h) - K(-s,a))y(t+s)Ids dt
0 -CO

0 T+s
f j IK(-s,a+h) - K(-s,a)l i Iy(t)Idt ds

0 T
SJ-0 IK(-s,a+h) - K(-s,a)I j Iy(t)Idt ds

0

s M1 TeaTlIn J IK(-s,c,+h) - K(-s,a)ids

MiTeOT InIhI 0 0l(-s)ds

for a, a + h e P. Here we have used (2.8) in the last
inequality. Since 1iE L'(0,m), this establishes (2.10).

Hypothesis (H12) of [8] requires the Lipschitz continuity
of the derivative with respect to a of the mapping Y(a)
defined by (2.6). For brevity, we denote the value of this
derivative at a e P by D9(a). The existence of DY(a) was
shown in Theorem 2.1 and from the proof of that theorem we
have the formula

0
(D9(a)h](t) = ( j [K'(-s,a)h]y(t+s)ds, 0

for 0 : t -s T, h e R, a E P, where y is the solution of (2.3)

50



with a = a0 and (n,p) = y0 * Recall that ' denotes

differentiation with respect to a. The local Lipschitz
continuity of DY(a) at a point a = a* e P now follows from
estimates similar to those used to establish (Hi1) but with 02

in place of 0i" This completes the proof of Theorem 2.2.

We now turn our attention to solutions of the
nonhomogeneous equation (2.1). It is well-known that a mild
solution to this equation is given by the variation of
constants formula

(w(t),wt) = S(ta)((,(q) + Q(ta)

where
t

(2.11) Q(t,a) = S(t-s,a)(F(s), 0)ds.
0

It remains, therefore, to consider the existence and
smoothness of the derivative of Q(t,a) with respect to a. We
again appeal to [8] where these properties of Q(t,a) are
demonstrated by considering similar properties of the mapping
9(c): LI(0,T;X) - L (0,T;X) defined by

[Ma()v](t) = ftB(a)S(t-s,0)v(s)ds

for v e L (0,T;X), a e P, a0 fixed. Note that if

v(t) = (F(t), 0) for some F e L (0,T), then

(w(t),wt) = JtS(t-s a0)v(s)ds
•0

where w is a mild solution of (2.1) with (n,p) = (0,0). Since
B(a) is a difference of closed operators,

I(a)v] (t) = 3(a) (w(t),wt).

Therefore, using definition (2.5) we obtain in this setting
that

0
(2.12) [(vij(t) -00 K(-s,a)w(t+s)ds, 0 )

where v(t) = (F(t), 0) and w is the solution of (2.1) with
a = a0 and (T,,V) = (0,0). Here we assume F is sufficiently
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smooth for the solution w to exist in the strong sense defined
earlier.

Comparing definitions (2.6) and (2.12), we see that
properties of 9(a) with respect to a can be proven in the same
way as the corresponding properties of 7(a) using the solution
of (2.1) in place of the solution of (2.3) at a fixed a0 E P.

For this reason the following theorems, which are consequences
of Lemmas 3.2 and 3.4 of [8], are stated without proof.

Theorem 2.3. For F E L (0,c), let Q(t,a) be defined by
(2.11). Then for every t e [0,T] and a9 E P, Q(t,a) is

Frechet differentiable with respect to a at a0 and this

derivative is given by the formula
t

D0Q(tao) = f0S(t-s,a 0 )[D a(a 0 )v(s)ds

where v(t) = (F(t), 0) and 9(a) is defined by (2.12).

Theorem 2.4. Suppose the hypotheses of Theorem 2.3 hold.
Then the mapping D Q(t,a) is locally Lipschitz continuous with
respect to a at every a* e P.

3. The algorithm. In this section we define a parameter
estimation algorithm based on quasilinearization and state
some local convergence results. For later adaptation we
develop the algorithm for the case a e P c R" with canonical
basis ei, i =1,2,. . .,n. In Section 4 the algorithm is

applied in the case n = 1. The definitions and theorems
stated here may also be found in [8], but are included here
for completeness.

Using the notation of the previous section, let
Y= (,V') c X and a e P. Let C be a bounded linear mapping

from X into a finite-dimensional space R f, and define

w(ta) = C(S(t,a)y 0 + Q(t,a)].

The parameter estimation algorithm is related to the following
optimization problem.

Problem 3.1. Let w. e f, j = 1,2,. .. ,m be data values

taken at times tj E [0,T], j = 1,2,. .. ,m, respectively. For

a e P define the quadratic cost function
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m
2

J(a) = lw(tjpa) - wj•I

j=j

Find a* e P such that J(a*) s J(a) for all a e P.

The quasilinearization algorithm method defines a
recursive algorithm whose fixed point is a local solution of
Problem 3.1. A more complete exposition is given in (3].
Given an initial guess a0 e P define

a k+1 =(k)' k = 0,1,2,.

where •(a) a - [D(a)] ]-b(a)

m
D(a) I M •(tja)M(tja)

j=1

m

b(a) = X T (tia)[w(tjIa) - We]
j=l

and the matrix M(t,a) has its ith column M i(t,a) given by

M i(t,a) = CDa [S(t,a)y 0 + Q(t,a)]ei, i = 1,2,. . .n.

The following theorems are typical of quasilinearization
methods. Their proofs may be found in r8). We obtain
superlinear convergence when there is an exact fit to data
(Theorem 3.1) and linear convergence in the presence of error
(Theorem 3.2).

Theorem 3.1. Suppose the conditions of the previous section
are satisfied. Moreover, assume [D(a)) exists, ?(a*) = a*,
and J(a*) = 0. Then for every c > 0 there exists 6 > 0 such
that

Ig~a - (a*) 1 : lia - a*I

for I( - a.*I s 6. In particular, there is a neignborhood V of
a* such that ak - a* as k -4 w whenever a0 E U.

The following theorem does not require an exact fit to
data but does place some technical restrictions on the
behaviour of the matrix M(t,a) near a*. Note that under the
conditions of Theorem 2.2 there exists number 6 > 0 such that
for 0 < 6 < 3 there exists a constant K(6) such that
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m

2 IMT(t.,X) - MH(t-,a*)I S K(6)Il - X*t
j=1

for la - x*1 s 6. Let K* lim sup K(6) and define's 4 0

*= K*ID(a*)- I maxlw(t.,a*) - wil.

Theorem 3.2. Suppose the conditions of the previous section
are satisfied. Moreover, assume [D(a*)]-I exists and
f(a*) = a*. Let A* be defined as above and assume A* < 1.
Then there exists S* > 0 such that

11(a) - f(a*) I s X*Ila - cx*I

for Ia - a*i :s 6*. In particular, ak - a* as k - o whenever

Ia0 - a*I - 6".

4. Numerical results. In this section we present several
examples that illustrate the ideas discussed in the previous
sections. Recall the identification problem : given
observations w. at times tj, j = 1,2,...,m, determine
a e [0,1) that minimizes tle cost functional

J(U) = I (x(tj) - we)2

j=1

where x(t) satisfies

;t •t e-P(t-s)x(t) = a x(s)ds + (l-a) x(s)ds + f(t)(4.1) = 0a + xI-s 0dt-) +

x(0) = xo

The quasilinearization algorithm requires that we solve (4.1)
along with its sensitivity equation which has the form
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x M)= a x(s)ds + ( j e-s) x (s)ds
0 0 (t-s)

Sir, (I-c) it e-9(t-S)
+ 2r (-a f• x(s)ds

(4.2) 
r(l-ax) 0 (t-s)

ft tse-1e(t-S)M- ) itn(t-s x(s)ds,
F~la)0 (t-s),

xa(0) = 0,

where x (t) = x(t). The zero initial condition reflects the

fact that the value x(O) = x0 is independent of the parameter

The implementaton of the identification scheme begins
with an initial guess for a. Equations (4.1) and (4.2) are
integrated using this initial value, then x(t) and x. (t) are

used to give an updated estimate of the parameter. For this
particular problem the quasilinearization algorithm updates
the current estimate ak according to

m
E (x(tj) - wj)XM(tj)

j=l
ak+l = k -'k j = m 2

E (x a(tj )
j=1

where x(t) and x (t) are the solutions of (4.1)-(4.2) computed

for a = ak* In order to numerically integrate the state and

sensitivity equations we first convert (4.1)-(4.2) to integral
equations via the substitution z(t) = x(t) and z,(t) = x (t).

Then one has the 4 x 4 system of integral equations consisting
of (4.1)-(4.2) with the above substitutions coupled with

t

x(t) = X(tp) + ft z(s)ds,

(4.3) p
'~tz

x a(t) = x (tp) + ta (s)ds,

p
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where t e [O,t) is determined by the approximation scheme.
The solution of the system of the integral equations is then
approximated by applying a product integration method based on
Simpson's rule to the singular integral terms, and Simpson's
rule to all other integrals. For a description of product
integration methods we refer the interested reader to (16].

In each of the following examples we numerically solve
(4.1)-(4.3) in time on the interval (0,1]. Define tj = j/N,
j = 0,1,...,N. The numerical integration scheme then computes
values for x(tj). Examples (4.1) and (4.2) presented here are
computed using a value of N = 50, and Example (4.3) is
computed using N = 200. In each case 5 data points located at
t = .2, .4, .6, .8, and 1.0 are used in the identification
procedure. The true values of x(t) in all of the Figures
(4.1)-(4.5) are denoted by x.

Example 4.1. In this example we set the values of a, g, and i
to 1., 1., and 5.,lrespectively. The parameter value to be
identified is a = ý , and the nonhomogeneous term f(t) is

f(t) = e-t ( 1024t3 + 2176t + 1792 ) - 1825

e-tt"5 32768 t 4 8192 t 3  512 t2 128 t + 2
-(.5) 315 35 +t -- t+

The true solution is x(t) = e-t T4(2t - 1) where T4 (s) is the

Chebyshev polynomial of degree 4 on -1 s s s 1. Tables (4.1)
and (4.2) contain the results for two computer runs, one for
an initial a of a0 = .9, and the other for a0 = .2 . The
sequence of ak values, their corresponding costs J(ak), and

the values of the state x(t) at time t = 1 are included to
illustrate the convergence. The true value of x(l) is
.3678794. Note that in each case once an estimate of a is
greater than .5, then the sequence of iterates converges
monotonically down to the true value. This is a characteristic
of all of our computer simulations, and seems to indicate that
it is better to choose an initial value of a that is high
instead of low. In fact, for all simulations another
characteristic is that if the initial choice is excessively
low, then the next estimate of a is greater than 1, and the
integral becomes undefined. For this particular example,
a0 = .1 resulted in a value greater than 1 for the next

iterate and the integration scheme broke down. However, though
not shown here, some examples ran succesfully even with a
negative initial value for a. Figures (4.1)-(4.2) show the
convergence of the state x(t) for the initial values of
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a= .9, and .2, respectively.

a = 1, 7 = 5, 1 = 1, true a = .5, initial a = .9

Iteration a J(a) x(l)

0 .9 78.9130445 -7.7572184
1 .8061489 11.8804011 -2.7175508
2 .7036760 1.6122215 -. 7432785
3 .6046577 .1689001 .0158974
4 .5327346 .0090401 .2877378
5 .5034419 .0000834 .3602260
6 .5000500 .0000000 .3677829

Table 4.1

a = 1, • = 5, j = 1, true a = .5, initial a = .2

Iteration a J(a) x(1)

0 .2 .1205106 .637832
1 .8835656 55.8792983 -6.443195
2 .7876713 8.3050417 -2.201167
3 .6845883 1.0919149 -. 542773
4 .5884893 .1055430 .090622
5 .5236488 .0045683 .311016
6 .5018820 .0000246 .363724
7 .5000214 .0000000 .367845

Table 4.2

Example 4.2. Here we set a = 1, 0 = 1, 1 = 4, and a = .9. The
nonhomogeneous term is

10e -t 1f (t) = -1 - 7 r(-.i7 t"-t

In this case the true solution is et .
This example contains a kernel that is more singular than

that of Example 1. The results for initial values of a0 = .999

and ao0 = .8 are given in Tables (4.3) and (4.4), respectively.

For comparison,the true value of x(1) is x(1) = .3678794. Note
again it appears that a high initial guess of a is preferable

57



to a low one. Moreover, for an initial guess of a0 = .75 the
algorithm updates the parameter to a value greater than 1 and
the program stops. The convergence of the states is shown in
Figures (4.3) and (4.4).

a = 1, j = 4, 1 1, true a = .9, initial a = .999

Iteration a J(a) x(1)

0 .999 56.1016515 7.127846
1 .9400160 4.37204423 2.223429
2 .9075174 .1077531 .656523
3 .9002876 .0001462 .378490
4 .9000004 .0000000 .367895

Table 4.3

a = 1, 7 = 4, 1 = 1, true a = .9, initial a = .8

Iteration a J(a) x(1)

0 .8 7.0279032 -1.895701
1 .9676194 17.3817062 4.096880
2 .9200856 .8805865 1.195951
3 .9019895 .0071213 .441968
4 .9000204 .0000007 .368632
5 .9000000 .0000000 .367879

Table 4.4

Example 4.3. This example has two features that are different
than the previous examples. In Section 2 we assumed that
9 > 0, ensuring that the integral in equation (2.4) exists.
This example illustrates that it may be possible to lift this
restriction to include g = 0, which results in a true
f•gtional derivative model. Also, for this example x(t) =
t . Thus the true solution has an unbounded second
derivative at t = 0. Because integration methods based on
Simpson's rule converge slowly for functions that do not have
four continuous derivatives, it was necessary to increase N to
200 for this example to gain accuracy.

Here we set the values a = 1, • = 0, 7 = 5, and a = .5.
The function f(t) is in this case
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3t'5 2t.25 23t2=t - 2t ---
f~) 25 8

The results of the quasilinearization algorithm are given in
Table (4.5) for the initial value of a0 = .9. The fact that we
could only obtain a to 3 correct digits is due to the
inaccuracy of the integration scheme used. Figure (4.5)
illustrates the convergence of the states to the true
solution.

a = 1, v = 5, • = 0, true a = .5, initial a = .9

Iteration a J(a) x(l)
0 .9 24.1608906 5.563632
1 .7641130 3.5153401 2.711820
2 .6246967 .3481690 1.531838
3 .5298167 .0127381 1.101062
4 .5019498 .0000392 1.005624
5 .5002170 .0000000 1.000050
6 .5002110 .0000000 1.000030

Table 4.5
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A DIRECT METHOD FOR PARAMETER

ESTIMATION IN DISTRIBUTED SYSTEMS 1

Dennis W. Brewer

and
Robert K. Powers

Department of Y'thematical Sciences
University of Arkansas

Fayetteville, Arkansas 72701

Abstract. We consider identification of parameters in a
partial differential equation modeling the longitudinal
vibrations of a viscoelastic beam. A semi-discrete
approximation of this model gi,:es rise to a Volterra
inLegrc-differential system with a weakly singular kernel.
Such ketnels arise in fractional derivative damping models of
viscoelastic materials. A quasilinearization method is used
to identify damping parameters in the system. We present the
results of numerical experiments using a Ga)erkin
approximation in space and an approximation in time which is
adapted to weakly singular systems whose kernels are not
continuous at the origin.

1. Introduction. In this paper we consider numerical methods
for the identification of parameters in an idealized physical
model for the longitudal motions of a uniform bar fixed at
both ends with Boltzmann type damping. The governing equation
is ([10], [15])

putt(x,t) - Eux(xt) + a ftg(t-s)u (xs)ds(i.1)at 0 0

+ f(xt), 0 < x < 1, t > 0,

with boundary conditions u(0,t) = 0, u(l,t) = 0,

IThis research was supported by the Air Force Office of
Scientific Research under grant AFOSR-89-0472.
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and initial conditions u(x,O) = d(x), ut(x,O) = v(x).

Here, u(x,t) represents the axial displacement of position x
at time t, p is the density of the material, E a stiffness
parameter, f(x,t) a forcing function, and

7e~
g(s,q) = r( sa s > 0,

represents a fractional derivative damping term modified to
have exponential decay [(1]. Here r(') denotes the gamma
function and q = (a,p) e R with 0 s a < 1 and g > 0. Such
kernels arine in the study of fractional derivative models of
viscoelastic structures. We refer the reader to [13], [19],
[14], [16], and in particular to [18] and the extensive
bibliography therein for a discussion of viscoelastic models
as they relate to weakly singular kernels.

In this paper we consider the identification of a and B.
Much of the groundwork for this paper appears in [9] and [8]
where the identification of scalar systems is considered and
in [6] and [7] where the theoretical framework used here is
established. Torvik and Bagley [1], (19] have estimated the
parameter a in the Laplace transform domain. Banks, et. al.,
[2], [4] have identified parameters corresponding to g and 7
in a similar but different model assuming a is known.

A Galerkin approximation is used to approximate (1.1) by
a Volterra equation with weakly singular kernel. In the
example presented below, this semi-discrete model is solved
using a product integration method based on Simpson's rule.
Product integration methods using polynomial collocation are
well suited for equations of the form (1.1) if the solution is
analytic on the entire interval of interest. However, for the
kernel of interest in this paper, the solution is not analytic
at t = 0 if f(t) is smooth (17].

If one applies a Galerkin scheme to equation (1.2), one
obtains a systen of second-order integro-differential
equations. Integrating a scalar form of this system yields an
equation of the form (See [9] for details.)

I.t t

(1.2) x(t)= a T x(s)ds + f0g(t-s)x(s)ds + f(t),

x(0) = x 0 .'

A standard assumption in viscoelasticity [14] is that the
material is in an unstrained state for time t < 0. This would
correspond to u(x,s) = 0 for s < 0 in equation (1.1). Define

z(t) = J x(s)ds. It follows then that x(s) = 0 and z(s) = 0
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for s < 0. If we define w(t) = col(x(t),z(t)), then w(t)
satisfies

(t) = Mw(t) + K (t-s)w(s)ds + F(t),

w(O) = , w(s)= ,s < 0,

where M= ) 0 a K(s) g(s) 0 and F(t) f(t)3( 0 )' 0 0 , n ~)= 0 "

2. The algorithm. In this section we state for reference the
quasilinearization algorithm which is defined in an abstract
semigroup formulation of equation (1.3). Details of this
construction and related smoothness results may be found in
[7] and [9]. We consider equation (1.3) in the form

0
( w(t) =Mw(t) + K(-s,q)w(t+s)ds + F(t), t > 0,(2.1 i)
w(0) = n, w(s) = q(s), s < 0,

where n = 01 e R, M = ( a ]0 , F(t) = ( , and

K(s,) e (la)s 1 0 ), s > 0.

We are interested in dependence on the parameter q =
(c,R) where g > 0 and 0 a < 1. By a solution of (2.1) we
mean a function w: (-w,w) 4 RI such that w is absolutely
continuous (A.C.) on [O,w) and satisfies the integral equation
a.e. on [0,w), w(0) = n, and w(s) = 9(s) a.e. on (-oo,O).

Our semigroup formulation follows the construction in [5]
as further devoloped in [11) and [12). Define the product
space X = R2 x L (--, 0) with norm

(71,4p) Ox = 1i7i + fl I(_.,0). Then it can be shown that the

solution of (2.1) is given by the variation of constants
formula

(w(t),wt) = S(t,q) (TI,) + Q(t,q)

where
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t
(2.2) Q(t,q) = S(t-s,q)(F(s), O)ds.

J0

and S(tq) is a C0 -semigroup on X corresponding to the

homogeneous version of (2.1).
We are now in a position to define a parameter estimation

algorithm based on quasilinearization and state some local
convergence results. For later adaptation we develop the
algorithm for the case q e P c Rn with canonical basis
e., i = 1,2,. .. ,n. In Section 3 the algorithm is applied in
the cases n = 1 and n = 2. The definitions and theorems
stated here may also be found in (7], but are included here
for immediate reference.

Let y0 = (np) E X and q e P. Let C be a bounded linear
tmapping from X into a finite-dimensional space R , and define

y(t,q) = C[S(t,q)y0 + Q(t,q)].

The parameter estimation algorithm is related to the following
optimization problem.

Problem 2.1. Let yj e R , j = 1,2,. .. ,m be data values
taken at times tj e [0,T], j = 1,2,. .. ,m, respectively. For
q e P define the quadratic cost function

m

2
J(q) = ly(tj,q) - •jj

j=1

Find q* e P such that J(q*) s J(q) for all q e P.
The quasilinearization algorithm method defines a

recursive algorithm whose fixed point is a local solution of
Problem 2.1. A more complete exposition is given in [3].
Given an initial guess q0 e P define

qk+l = t(q k), k = 0,1,2,.
where w(q) = - [D(q) ] -Ib(q)

D(q) = M ST(t.,q)M(tjq)

m j=l

b(q) = T ST(tj,q)(y(tj,q) yj]
j = Ith

and the matrix M(t,q) has its 1 column M (t,q) given by
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Mi(t,q) = CD [S(t,q)y0 + Q(t,q)]ei, i = 1,2,...n.

The following theorems are typical of quasilinearization
methods. Their proofs may be found in (7]. We obtain
superlinear convergence when there is an exact fit to data
(Theorem 2.1) and linear convergence in the presence of error
(Theorem 2.2).

Theorem 2.1. Suppose the conditions of the previous section
are satisfied. Moreover, assume [D(q)] exists, ?(q*) = q*,
and J(q*) = 0. Then for every c > 0 there exists 6 > 0 such
that

II(q) - ?(q*)I s clq - q*I

for Iq - q*I s (S. In particular, there is a neighborhood U of
q* such that q k q* as k -+ w whenever q 0 e U.

The following theorem does not require an exact fit to
data but does place some technical restrictions on the
behaviour of the matrix M(t,q) near q*. Note that under the
conditions of Theorem 2.2 there exists number 9 > 0 such that
for 0 < 6 < 3 there exists a constant K(6) such that

m

IMT(tj,q) - WT(t.,q*)I s K(8)Iq - q*I

j=l

for Jq - q*I : S. Let K* = lim sup K(S) and define

X* = K*ID(q*)' I maxlw(tj,q*) - wjl.

Theorem 2.2. Suppose the conditions of tle previous section
are satisfied. Moreover, assume (D(q*)] exists and
I(q*) = q*. Let A* be defined as above and assume A* < i.
Then there exists 6* > 0 such that

I?(q) - ?(q*)I s A*Iq - q*I

for Iq - q*l s 6*. In particular, qk -4 q* as k 4 whenever

1q0 - q*I 5 6*.

3. Numerical results. In this section we present numerical
results for parameter estimation in a semi-discrete
approximation of the partial differential equation
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(Putt(x,t) Euxx (x,t)

1+ 8j te-•_( t-s)
+(I-=) at 0 (t-s) u (x,s)ds + f 1 (x,t)

with boundary conditions u(0,t) = 0, u(1,t) = 0, and

initial conditions u(xO) = uo(x), ut(xO) = Ul(X).

Integrating with respect to t one obtains

t
PU t(x,t) = Ef uxx(xs)ds +

P(1-) je~ S u (x,s)ds + f (x,t)
r [te- o (t-s) a x

t
where f 2 (xt) = f0fl(x,s)ds + pul(x).

We apply a Galerkin approximation in which the interval (0,I)
is divided into N equal parts and the homogeneous boundary
conditions allow us to approximate the solution by a function

N
of the form u(x,t) = X a.(t)Oj(x) where Oj is a cubic spline

basis element. Substituting in the equation, taking an inner
product with a basis element Ok' and integrating by parts

yields a Volterra equation in t of the form

(3.1) {pA v(t) = -EDN v(s)ds - vsd(3 1 DN t e-is(t-s)
- 7 D J e a v(s)ds + f 3(t)

r(l-a) 0 (t-s)

where AN and DN are N+1 x N+1 matrices depending on inner
products of @j and 0."

The quasilinearization algorithm requires that we solve
(3.1) along with its sensitivity equations which have the form
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0 a 0(i-a) 0 (t-s)( x (s)ds

+ ' (-a) f e(t x(s)ds

(3.2) r(l-a) 0 (t-s) a

ft lntse- 0 (t-s)
7 I n (t-s) e (t s I x (s)ds ,
Ma 0O (t-s) a

x a(0) = 0,

x(t) = X (s)ds + ft e(ts)x (s)dsfo nir(1a) 10 (t-s) a 1

(3.3) ft e-g(t-S)(t-s)
r(l-a) o (t-s)a

xg(o) = 0.

where and x = . The zero initial conditionwher 13a ag
reflects the fact that x(O) = x 0 is independent of a and B-

It is important to note that (3.2) and (3.3) also have weakly
singular kernels.

The implementaton of the identification scheme begins
with an initial guess for q = (a,g). Equations (3.1)-(3.3) are
integrated using this initial value, then x(t), xa (t),and

x (t) are used to give an updated estimate of the parameter

using the quasilinearization algorithm.
As a specific example consider the partial differential

equation

Putt(x,t) = Eu xx(X,t)

+I t [t-B(t-s)
+ a- f (t-s)- U xx(xs)ds + f(x,t)

r (l-a) at 0
with boundary conditions u(0,t) = 0, u(lt) = 0, and initial
conditions u(x,0) = 0, ut(x,0) = 4rsin(2nx), where p = 1,

E = 1, y = 1, a = 1/2, and g = 0. The exact solution is
u(x,t) = sin(2rx)sin(4nt) with the forcing function chosen as
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f(xt) = usin(2nX) + 3nsin(2nx)cos(4nt) +

+ r2 Vt sin(4rx) k1 -1)k ( t)2k+1

= o F(2k + 5/2)

The numerical scheme uses N = 8 and h = .02. The parameter
estimator uses 70 data points taken from the exact form of
ut(x,t). The results of an application of the

quasilinearization algorithm to the estimation of the
parameter a are given in the table below.

Iteration a J(a)

0 .9 1703.2400606
1 0.0783169 10811.4763257
2 0.2310107 4486.6256214
3 0.3658041 1012.4621853
4 0.4729954 32.7112404
5 0.4990789 0.0523379
6 0.5002075 0.0001728
7 0.5002095 0.0001726
8 0.5002095 0.0001726

The table below shows the results of the algorithm for
identifying both the parameter a and P.

Iteration a 1 J(a,1)

0 0.2000000 0.5000000 5076.0182126
1 0.2986892 6.5002076 1394.6849127
2 0.5281903 7.7538270 273.4823741
3 0.4674188 -4.2094682 469.6983381
4 0.5135026 -3.4408819 70.7243517
5 0.5203233 -2.3067455 26.1540142
6 0.5029341 -0.1314789 0.2291736
7 0.5001956 0.0032037 0.0001997
8 0.5002027 0.0009508 0.0001674
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